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Abstract 
 
In this paper, we investigate the utility of static 
anthropometric distances as a biometric for human 
identification.  The 3D landmark data from the CAESAR 
database is used to form a simple biometric consisting of 
distances between fixed rigidly connected body locations. 
This biometric is overt, and invariant to view and body 
posture. We use this to quantify the asymmetry of human 
bodies, and to characterize the interpersonal and 
intrapersonal distance distributions. The former is 
computed directly and the latter by adding zero-mean 
gaussian noise to the landmark points. This simulation 
framework is applicable to arbitrary shape based 
biometrics. We use gross body proportions information to 
model a computer vision  recognition  system. 
 
1. Introduction 
 
Humans can be classified by biometric shape information. 
Systems based on hand geometry and 3D face 
information have been studied and deployed. The 
performance of such biometric systems is measured 
empirically without explicitly measuring the available 
information contained in the biometrics. We demonstrate 
here that the newly available CAESAR database [1,2] 
may be used to assess the efficacy of shape-based 
biometrics. We use a small amount of non-dynamic 
anthropometric information to examine how well a 
hypothetical computer vision system would perform at 
human identification. The CAESAR database provides a 
perfect corpus for this study because it is contains high 
resolution, three-dimensional, shape information for a 
large population. 
 
For our study, we selected from the seventy-three 
CAESAR anthropometric landmarks those points that 
yield overtly visible inter-joint distances. We use those 
3433 bodies for which the CAESAR database lists no 
problems and no missing data. We use the FRVT 2002 
methodology [3,4]: we form gallery and probe sets and 

compute a distance matrix that quantifies the closeness of 
the 3433 persons in the sets. We compute recognition 
performance for a system based on static body shape. The 
result can be used as a baseline for gait algorithms 
designed to exploit kinematic information [6,7,8]. 
 
The next section details the CAESAR database. Section 3 
presents an elementary but viable biometric formed from 
static information. Section 4 shows the effect of 
measurement error, and examines human asymmetry. 
Finally, we present identification and verification 
performance scores. 
 
2. CAESAR database 
 
The CAESAR (Civilian American and European Surface 
Anthropometry Resource) project has collected 3D Scans, 
seventy-three Anthropometry Landmarks, and Traditional 
Measurements data of 5000 people. The objective of this 
study was to represent, in three-dimensions, the 
anthropometric variability of the civilian populations of 
Europe and North America. The CAESAR project 
employs both 3-D scanning and traditional tools for body 
measurements for people ages 18-65. A typical CAESAR 
body is shown in Figure 1. 

Figure 1. A typical Caesar body and the landmark 
points 



 
The seventy-three Anthropometry Landmarks were 
extracted from the scans. These are point-to-point 
distances where the points are pre-marked by pasting 
small stickers on the body and automatically extracted 
using landmark software. The landmarks identify key 
bone joint structure and are adequate to segment the body 
and produce anatomical reference axis systems for the 
key body segments and joints. The available landmarks 
are listed in Table 1.  
  

Table 1. Numbers and name of the Landmark 
Points, arranged in point-picking order 

1 Sellion 
2 Rt. Infraorbitale 
3 Lt. Infraorbitale 
4 Supramenton 
5 Rt. Tragion 
6 Rt. Gonion 
7 Lt. Tragion 
8 Lt. Gonion 
9 Nuchale 
10 Rt. Clavicale 
11 Suprasternale 
12 Lt. Clavicale 
13 Rt. Thelion/Bustpoint 
14 Lt. Thelion/Bustpoint 
15 Substernale 
16 Rt. 10th Rib 
17 Rt. ASIS 
18 Lt. 10th Rib 
19 Rt. Iliocristale 
21Rt. Trochanterion 
22 Lt. Iliocristale 
23 Lt. Trochanterion 
24 Cervicale 
25 10th Rib Midspine 
26 Rt. PSIS 
27 Lt. PSIS 
28 Waist, Preferred, Post. 
29 Rt. Acromion 
30 Rt. Axilla, Ant 
31 Rt. Radial Styloid 
32  Rt. Axilla, Post. 
33 Rt. Olecranon 
34 Rt. Humeral Lateral Epicn 
35  Rt. Humeral Medial Epicn 
36  Rt. Radiale 

37 Rt. Metacarpal Phal. II 
38 Rt. Dactylion 
39 Rt. Ulnar Styloid 
40 Rt. Metacarpal-Phal. V 
41 Lt. Acromion 
42 Lt. Axilla, Ant 
43 Lt. Radial Styloid 
44 Lt. Axilla, Post. 
45 Lt. Olecranon 
46 Lt. Humeral Lateral Epicn 
47 Lt. Humeral Medial Epicn 
48 Lt. Radiale 
49 Lt. Metacarpal-Phal. II 
50 0 Lt. Dactylion 
51 Lt. Ulnar Styloid 
52 Lt. Metacarpal-Phal. V 
53 Rt. Knee Crease 
54 Rt. Femoral Lateral Epicn 
55 Rt. Femoral Medial Epicn 
56 Rt. Metatarsal-Phal. V 
57 Rt. Lateral Malleolus 
58 Rt. Medial Malleolus 
59 Rt. Sphyrion 
60 Rt. Metatarsal-Phal. I 
61 Rt. Calcaneous, Post. 
62 Rt. Digit II 
63 Lt. Knee Crease 
64 Lt. Femoral Lateral Epicn 
65 Lt. Femoral Medial Epicn 
66 0 Lt. Metatarsal-Phal. V 
67 Lt. Lateral Malleolus 
68 Lt. Medial Malleolus 
69 Lt. Sphyrion 
70 Lt. Metatarsal-Phal. I 
71 Lt. Calcaneous, Post. 
72 Lt. Digit II 
73 Crotch 

 
 
 
3. Body Shape as Biometric 
 
The landmark points on the human body as shown in 
Figure 2, are located on the surface of the CAESAR 
body. Assuming a Cartesian coordinate system, the i-th 
landmark point is Pi = (xi, yi, zi). The CAESAR database 
provides seventy-three such points for the 5000 subjects, 
in the three poses. For recognition purposes, we require 

only those points where their separations are pose-
independent and feasibly findable in a camera’s field of 
view. This applies to points connected by a single large 
bone. Thus, we form a biometric vector of twelve 
distances, d, with d1 wrist to elbow, d2, elbow to shoulder, 
d3 hip to knee etc.  for which the Euclidean distance d = 
||Pi – Pj|| is invariant across different poses.  Distances 
such as chin-knee are avoided.  All measurements are in 
millimeters (mm). 
 

 
Figure 2. A typical Caesar body and the landmark 

numbers and positions 
 
4 The Error Modeling 
 
A computer vision based system will incur some error in 
measurement of the landmark points. This actual error is a 
complex function of the imaging system, image post-
processing, and 3D calculation algorithm. For simplicity, 
we avoid any analysis of this process, instead specify an 
equivalent error on the position of the landmarks, and 
study the effect of error on the recognizer.  
 
Because the CAESAR database contains high quality 
measurements which essentially define the ground truth 
and does not contain second measurements of each 
person , we model subsequent appearances of a person by 
perturbing the known landmark point Li by adding zero 
mean Gaussian random noise N(0,σ2) isotropically to 
each coordinate. The displacement of each point will have 
a Maxwell distribution of the form 
 

era ararf 2/22/3 22),( −= π  

 
where a = σ -2, the distance r, has variance σM

2  = (3π-
8)/πa, and the root mean square perturbation is √(3/a). In 



our trials when we add noise to each coordinate N(0, σ2) 
the effect on distance is shown in Table 2. 
 

Table 2.Gaussian Noise  versus Maxwell RMS 
Displacement 

Gaussian Noise  σ (mm) Maxwell RMS 
Displacement (mm) 

5  8.66 
10  17.32 
15  25.98 
20  34.64 
25 43.3  

 
This noise model is homogenous over persons and 
landmark points, and isotropic over coordinates. This is 
clearly the simplest case. A fuller treatment of noise 
should be considered for other applications and human 
body parts. 
 
The effect of adding noise to landmark points is shown in 
Figures 3a, b, and c, which give the distributions of the 
wrist-elbow distance as the standard deviation of the 
noise varies from zero to 25 mm. The observed maximum 
values of the perturbation are within about  +/- 5σ.  
 

Figure 3a. Histogram of difference in distance 
between wrists to the elbow at noise level of 

σ =5 mm. 
 
 
 

Figure 3b. Histogram of difference in distance 
between wrists to the elbow at noise level of 

σ =10 mm. 
 

Figure 3c. Histogram of difference in distance 
between wrists to the elbow at noise level of 

σ =20 mm. 
 
5. The Asymmetry Problem 
 
In this study, we compare the effect of asymmetry in 
human body and measurement error for biometric 
evaluation. In this discussion, “gallery” refers to the 
groups of enrolled biometric signatures and “probe set”  
refers to the groups of “unknown” test signatures. For the 
gallery, we use invariant segments from left part of the 
body and distances from the right side for the probe set.. 
The recognition engine then simply computes the L1  
distance between all pairs of i-th gallery and the j-th 
probe signatures to form the distance matrix with six, 
nine, and twelve segments. The total number of subjects  



with clean and complete data in landmark points is 3433, 
and all of those individuals are used in the recognition. 
 
The asymmetry in the distances is shown as a histogram 
in figures 4a and 4b. The difference in the distances 
between the left and right side for the elbow to wrist and 
from elbow to shoulder are around 40 mm. The difference 
is mainly due to measurement error and natural 
asymmetry in human body. 
 
 

Figure 4a. Histogram of the left-right difference in 
distance between wrist and elbow 

 

Figure 4b. Histogram of the left-right difference in 
distance between elbow and shoulder 

 
 
 
 

 
6.  Recognition Performance 
 
We have followed the FRVT 2002 [3,4,5] methodology 
and have simply inserted the original biometric vector d, 
from each subject into the gallery and have inserted the 
noise perturbed vector d’ into the probe set.  
 
The resulting matrices are used to compute the 
identification and verification performance scores. The 
standard measure of verification performance is Receiver 
Operating Characteristic (ROC). The ROC plot shows the 
false alarm rate (FAR) on the horizontal axis and the 
probability of verification on the vertical axis, which is 
also one minus the false reject rate (1-FRR). FAR is the 
percentage of imposters wrongly accepted by the security 
system while FRR is the percentage of valid users 
rejected by the security system. Hence there is tradeoff 
between FAR and FRR that depends on security policy 
and through-put requirements. 
 
The measure of identification performance is the “rank 
order statistics,” called the Cumulative Match 
Characteristics (CMC). The rank order statistics indicate 
the probability that the gallery subject will be among the 
top r matches to a probe. This probability depends upon 
both, gallery size G and r. 
 
7. Results 
 
The results for error modeling and the asymmetry 
problem are presented in the next two sub sections. 
 
7.1. Results for the Error Modeling  
 
The dependence of rank one identification performance, 
CMC(1), on gallery size G is of primary concern and is 
shown in Figure 5. For a noise of σ =10 mm, the CMC(1) 
at a gallery size of 3433 drops to 0.2. 
 



Figure 5. Effect of population size. As gallery size G 
increases, the rank one identification rate falls 

rapidly. 
 
An Identification Performance based on Cumulative 
Match Characteristic and different level of noise added is 
shown as a Boxplot in Figure 6. The plot shows the 
probability of matching the gallery subject at the top 1 
rank vs. the noise level. The probability of match at 1 
rank is 100% at 0 mm noise level, drops to 45% at noise 
level of σ =7.5mm and 20 % at the noise level of σ 
=10mm. 
 

 
In Figure 7 we see the Cumulative Match Characteristics 
for the twelve element biometric signature degraded by 
increasing amounts of location perturbation noise. The 
curves exhibit the usual rise, approaching 1 as the  rank 

approaches the gallery size. For large amounts of noise 
the population is essentially unidentifiable using this 
biometric. The same finding is evident in the verification 
ROCs of Figure 8. 
 

Figure 7. Identification performance, plotted as 
CMC, shows effect of rank for different noise levels. 

 

Figure 8. Verification performance, plotted as ROCs, 
for increasing location perturbation values. 

 

Figure 6. Boxplot of the  Cumulative Match 
Characteristics at Rank 1 versus location perturbation 

in mm. 



Figure 9. The match and non-match densities.  
 
Figure 9 shows the match and non-match densities for 
noise levels of σ =5, 10, and 20 mm. As the noise level is 
increased, the match and non-match distributions overlap 
leading to decreased recognition performance. 
 
7.2. Results for the Asymmetry Problem 
 
The dependency of CMC(1) on gallery size for the 
asymmetry problem is shown in Figure 10, for a gallery 
size of  3433, the CMC(1) drops to 0.4 
 

Figure 10. Effect of gallery size for left-right 
asymmetry signatures 

 
The evaluation performed on the data based on two 
metrics, Identification Performance based on Cumulative 
Match Characteristic is shown in Figure 11. The plot 
shows the fractions of probe signatures whose gallery 
match was within the given ranks. This is plotted for 
signatures containing six, nine and twelve segments. 

 

Figure 11. The Cumulative Match Characteristic 
curves for the Asymmetry Problem for Different 

Number of Segments 
 
Next we show verification performance of the biometric 
using the Receiver Operating Characteristics (ROC) as 
shown Figure 12. The ROC graph shows the true accept 
rate (legitimate access) vs. the false accept rate (erroneous 
admission) and shows that as the number of elements of 
the biometric signature is increased a person becomes 
more left-right self-similar. With 12 elements 80% of 
persons are correctly verified while falsely accepting 1%. 
 

Figure 12. ROC curve for six, nine, and twelve 
segments for the asymmetry problem. 

 
 
 
 



8. Conclusion 
 
We have simulated a computer vision identification 
system that attempts to recognize humans from their overt 
static body measurements. We have shown, via a simple 
biometric of twelve static body measurements, that the 
viability of a biometric can be measured by synthetically 
degrading it. We acknowledge that the noise model is 
important to comparing the result with samples drawn 
from the interpersonal non-match. 
 
The simple biometric signature we defined, performs 
poorly except when the match distribution is only 
minimally degraded. Two means of improving such an 
identification system are to use a richer set of overt body 
distances, and to reduce localization errors. The former 
requires a more sophisticated computer vision system. 
The later should be realizable if, given a video sequence 
instead of a single snapshot, the positional errors can be 
reduced by coherent averaging through time. Of course 
video sequences offer temporal information that is 
employed by dynamical gait recognition algorithms, for 
example [9]. 
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